Publications internationales

2024
W. H. Elashmawi, A. Djellal, A. Sheta, S. Surani, and S. Aljahdali. (2024), Machine learning for enhanced COPD diagnosis: A comparative analysis of classification algorithms. Diagnostics : MDPI, https://www.mdpi.com/2075-4418/14/24/2822

Résumé: Background: In the United States, chronic obstructive pulmonary disease (COPD) is a significant cause of mortality. As far as we know, it is a chronic, inflammatory lung condition that cuts off airflow to the lungs. Many symptoms have been reported for such a disease: breathing problems, coughing, wheezing, and mucus production. Patients with COPD might be at risk, since they are more susceptible to heart disease and lung cancer. Methods: This study reviews COPD diagnosis utilizing various machine learning (ML) classifiers, such as Logistic Regression (LR), Gradient Boosting Classifier (GBC), Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Random Forest Classifier (RFC), K-Nearest Neighbors Classifier (KNC), Decision Tree (DT), and Artificial Neural Network (ANN). These models were applied to a dataset comprising 1603 patients after being referred for a pulmonary function test. Results: The RFC has achieved superior accuracy, reaching up to 82.06% in training and 70.47% in testing. Furthermore, it achieved a maximum F score in training and testing with an ROC value of 0.0.82. Conclusions: The results obtained with the utilized ML models align with previous work in the field, with accuracies ranging from 67.81% to 82.06% in training and from 66.73% to 71.46% in testing.

Alaa Sheta, Walaa H. Elashmawi, Adel Djellal, Malik Braik, Salim Surani, Sultan Aljahdali, Shyam Subramanian, Parth S.. (2024), Comprehensive evaluation of machine learning techniques for obstructive sleep apnea detection. International Journal of Advanced Computer Science and Applications(IJACSA) : SAI, https://thesai.org/Publications/ViewPaper?Volume=15&Issue=12&Code=IJACSA&SerialNo=11

Résumé: Obstructive Sleep Apnea (OSA) is a prevalent health issue affecting 10-25% of adults in the United States (US) and is associated with significant economic consequences. Machine learning methods have shown promise in improving the efficiency and accessibility of OSA diagnoses, thus reducing the need for expensive and challenging tests. A comparative analysis of Logistic Regression (LR), Support Vector Machine (SVM), Gradient Boosting (GB), Gaussian Naive Bayes (GNB), Random Forest (RF), and K-Nearest Neighbors (KNN) algorithms was conducted to predict Obstructive Sleep Apnea (OSA). To improve the predictive accuracy of these models, Random Oversampling was applied to address the imbalance in the dataset, ensuring a more equitable representation of the minority class. Patient demographics, including age, sex, height, weight, BMI, neck circumference, and gender, were employed as predictive features in the models. The RFC provided outstanding training and testing accuracies of 87% and 65%, respectively, and a Receiver Operating Characteristic (ROC) score of 87%. The GBC and SVM classifiers also demonstrated good performance on the test dataset. The results of this study show that machine learning techniques may be effectively used to diagnose OSA, with the Random Forest Classifier demonstrating the best results.

2023
Salah Arif and Adel Djellal and Nawel Djebbari and Saber Belhaoues and Hassen Touati and Fatma Zohra Guellati and Mourad Bensouilah. (2023), Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming. Geomatics and Environmental Engineering : AGH, https://www.gaee.agh.edu.pl/gaee/article/view/212

Résumé: Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.